
The art of debugging 
 
By Samek Mokryn 
 
Introduction 
The debugging of complex systems is the most challenging, frustrating and time-
consuming part of the system design process. Systems like FPGAs (Field Programmable 
Gate Arrays) with internal embedded processors present a special challenge due to vastly 
increased complexity, very limited visibility to the internal operations, and the 
heterogeneous hardware/software nature of the designs. 
 
The word “Art” is used here in its very basic meaning: a branch of activity, using a 
special medium and technique that do not rely exclusively on the scientific method. 
Not scientific in engineering? This sounds contrary to common sense. But, it turns out 
that the debugging process requires not only a lot of knowledge and dedicated tools, but 
also instinct and imagination on the part of the tester.  This happens due to the lack of 
complete information about the source of the error, as is almost always the case. 
 
The cost of system malfunctions versus the cost of testability (or lack thereof) 
As often as the cost of system malfunctions is recognized and acknowledged, just as 
often the cost of lack of system testability is underestimated. In a fast-paced world, the 
emphasis is on reaching the project’s target, rather than on mundane testing, and certainly 
not on dedicated hardware for error detection and correction. On the other hand, errors 
detected late can vastly increase the cost of support, decrease product acceptance in the 
marketplace, or even result in project cancellation. 
 
In a constant drive to reduce costs, testability is often the first victim, shifting the total 
cost of the system from an initial NRE (non-recurring expenses) to the post-delivery 
support cost. The amount of initial cost savings is measurable; the future cost of support 
or product failure is not. 
 
A closely related (motivated by the same reasons) problem is created by the selection of 
universal hardware/software platforms as the basis for a dedicated system. The reason is 
that such a platform, by being universal, cannot support the variety of dedicated system 
requirements (like various block checksums, redundant paths or dedicated error detection 
mechanisms). Testability is compromised yet again, while due to the lack of knowledge 
about the operations of these universal (mostly external) components, error determination 
is made even more difficult. 
 
System malfunctions  
There are various reasons that can cause a system malfunction: 

1. Designer’s errors; 
2. Omitted states or state transitions; 
3. Interface problems; 
4. The physical behavior of underlying systems and technologies; 
5. Defective components. 



 
Designer’s errors 
Most of such errors happen early in the design process and some are relatively easy to 
spot. They can be as simple as a wrong expression, or they can be as subtle as a 
misunderstanding of the problem at hand. The first problem can be detected in 
simulation, while in the latter case no simulation will help if the simulation model is built 
upon the same assumptions as the design. There are many reasons why there can be 
misunderstandings, some of them not necessarily the designer’s fault, (it is possible to 
write many articles about this problem alone). 
 
One, rather common subclass of the designer’s errors is wrong system behavior in 
boundary conditions, like counter overflows, system or subsystem resets in various 
operational states of the system, etc. Some of these problems cannot possibly be 
addressed in the schedule and budget driven design process and start manifesting 
themselves long after the product is delivered to the customer. 
 
Omitted states or state transitions 
In a non-digital world the other name for this error source can be “a problem complexity 
not fully recognized.” In a simpler, digital world, the number of states of any complex 
design comprised of thousands of flip flops and millions of memory cells is larger than 
2^10^9 (2 to power of n binary elements). And even this model is too simplistic, given 
non-zero transition time (i.e. in-between states), race conditions, metastability and other 
effects. It is impossible to cover all the state space during the design process, though the 
vast majority of states are “don’t care” or will never occur. The problem arises when they 
do happen, often very late in the product lifecycle (on the customer site). 
 
Interface problems 
Interface problems are a common source of errors. If the remote system does what the 
designer didn’t expect, the result may be unpredictable. Often, various systems respond 
differently to the same events. There are also possible secondary errors, i.e. if one system 
malfunctions then it sends improper responses causing the next system to malfunction. If 
there is no proper monitoring system in place, it is often impossible to determine who is 
at fault. 
 
Interface problems can be regarded as a state space that was vastly expanded, while part 
of such space is not under the control of the designer. 
 
There is always the desire to define interfaces as precisely as one can do. It can be 
achieved when the interfaces are simple and there is a strong separation between 
communication systems (a very small number of well defined common states). However, 
in the case of more complex or less precisely defined interfaces, where the word “shall” 
is replaced by the word “may”, problems can be expected. 
 
The physical behavior of underlying systems and technologies 



There is a common assumption that modern chips are inherently reliable. But in reality 
these are complex analog circuits that are subject to many physical effects that can cause 
system malfunction. These effects can be both internal and external.  
 
Internally generated errors 
Internally generated errors can be induced by effects like thermal noise, variability in 
path delays (race conditions), metastability effects, line reflections, and most commonly, 
internally generated noise. A common CMOS technology consumes almost all energy in 
state transitions, and due to the very large density of modern chips and synchronous 
designs, thousands of flip flops can switch almost simultaneously. The resulting current 
spikes can easily exceed 100 Amperes or more, causing an internal “ground bounce” that 
in turn can cause a wrong state transition or an inadvertent state change. Also, due to an 
inherent capacitive coupling, these transitions can induce an undesired state change in 
neighboring flip flops as well. Interestingly, FPGAs are more prone to these effects than 
ASICs, since the noise distribution is a function of the design, unknown to the FPGA 
manufacturer; hence the preventive action that can be taken to avoid such errors is 
inherently more limited.  
 
Externally generated errors 
Increased density levels and lowered power consumption per bit result in a lower energy 
required to change the state of a memory cell or flip flop. Hence, any external energy 
delivered to the circuit can change the behavior of the system. This energy can come in a 
form of electromagnetic radiation, electrostatic discharge, alpha particles radiation, power 
noise fluctuations or induced noise. Even though most chips are designed to provide 
some defenses against these effects, these defenses are not perfect.  
 
The sensitivity to disturbances, both internal and external, varies from chip to chip, since 
no one chip is identical to the other.  Furthermore, the effect of these disturbances 
depends on the particular state of the design. 
Since seldom (today almost never) do the designs incorporate a detection mechanism for 
errors generated by an unpredictable source, errors like these can go undetected and 
cause a system malfunction that cannot be explained. 
 
Defective components 
The component vendors prescreen devices for errors. Later in the process, the system 
vendors are testing their products (some more than others) for defects. The common 
methodology for determining if the component is defective is a comparison test; if the 
test is successful in the system containing one component, but is not successful in the 
same system containing a second, equivalent component, the second component is 
deemed as defective. Such simplistic testing seldom attempts to determine the real reason 
for the failure. As a result, errors generated by other effects, mentioned above, are often 
classified as component defects and subsystems containing the suspected components are 
discarded. This is a pretty expensive way to solve the problem and sometimes it is a futile 
one. 
Since physical properties of materials change with time or can be affected by external 
conditions, components can become defective on the customer side, where the testing 



capabilities are by far more limited than in the manufacturer’s lab. The suspected 
subsystems or even whole systems are than replaced indiscriminately, sometimes to find 
later that the problem repeats itself. 
 
For one reason or another, the system errors are here to stay. The question is if the level 
of errors is acceptable to the user, or if systems are built in such a way, that they can 
continue to operate in the presence of errors. But this is a completely separate subject. 
 
The basics of debugging 
The common methodology of finding the source of error consists of the following steps: 

1. Collecting the information about the error state, and if possible, the history of how 
the error state was entered; 

2. Determining the minimum subset of the system and input conditions that are 
involved; 

3. Evaluate the selected subset for various error sources; 
4. If step 3 finds a definitive reason for the error, take the appropriate action that 

solves or avoids the problem, otherwise go back to step 1; 
5. Retest the modified system. If the problem is solved you’re done, otherwise go 

back to step 1. 
 
There are four basic factors that determine the success and the effort of the debugging 
process: 

1. The amount of information the system provides about the error condition; 
2. The tester’s knowledge of the system under test; 
3. System complexity; 
4. Frequency of a problem’s reoccurrence. 

 
The information about the error condition 
The amount of information available to the tester helps him define the subset of the 
system and inputs that are involved in the error, and as such allow him to define smaller, 
more managaeable sets to look for the mechanism of the problem at hand. However, 
collection of test information online requires additional system and design resources, and 
is often neglected in the system design, with an obvious adverse effect on the debugging 
process. 
 
In the 370 Series of IBM mainframes almost one third of the hardware was dedicated to 
the “unit check” information collection process, which was clearly a factor in establishing 
this product as the most reliable computing platform. Today technology and fabrication 
processes are much better and more reliable than in 70s. However, modern systems are 
also more complex and integrated, while the amount of resources dedicated to testability 
is far lower, making the debugging process so much harder. 
 
There are various methods that one can try to substitute for the lack of information, like 
incorporating higher level checks, differential testing - forcing the system to some 
specific states or slightly modifying the system and retrying the tests (if the problem 
disappears there is some additional information here), or comparison testing – compare 



the system behavior with a second, nearly identical system under the same conditions and 
checking if both system behave the same way. 
Higher level checks (various checksums, error detection and correction mechanisms and 
protocols) are systemic methods defined during the system definition process. 
The other methods tried during the debugging process are often very time and effort 
consuming. Ironically, the most time is taken by problems, which, because of lack of 
information, cannot be solved. 
 
The tester’s knowledge of the system under test 
Given incomplete information about the error environment forces the tester to guess the 
next step. In this situation, the tester’s knowledge and experience come into play. The 
more knowledge the tester has about the system and the more experienced the tester is 
(i.e., had previous experience with the same sort of system behavior), the higher the 
probability that he/she will guess correctly. Once we are in the stochastic space of 
behavior, the debugging process becomes more an art than a science. The tester is guided 
now more by intuition than by anything else. And, interestingly, some testers will 
consistently be better than others. 
 
Since no human mind is capable of comprehend ing a system with all of its details as a 
whole, it is mandatory to minimize the problem analysis to a part of the system and input 
conditions that are directly involved with the error detected. This can be done only by 
analysis of the data available and knowledge of the system operations. Once determined, 
this part can be tried, simulated or forced to various states (some systems give you such 
capability, system simulators always do).  The simpler the definition of the subsystem is, 
the easier it is to find the source of the problem and provide an appropriate solution. 
 
In the case that the source of an error cannot be determined, the only alternative is to try 
to imagine what the mechanism of the problem is, and modify the system to be immune 
from this error, if at all possible. Please note, that if an error disappears, as a result of any 
modification, if any, it doesn’t mean it will not return, in one form or another. Only 
thorough understanding of the problem can provide a proper solution. 
 
System complexity 
This theme is mentioned in this article time and time again. Hence, the reduction of 
system complexity is of paramount importance. Ideally, the system is comprised of 
dedicated modules, each as simple as possible and dedicated to a particular function, 
which can be thoroughly tested, and with simple, very precisely defined interfaces 
between adjacent modules. 
 
Universal, integrated systems, on the other hand, are very difficult to test. A variety of 
errors can lead to the same system malfunction, making error determination extremely 
vague. Generally, they also provide very limited testing information, often making error 
determination impossible. As a result, familiar system restarts are required, while users’ 
expectations are that the problem will not repeat itself. Another alternative is to blindly 
replace part of the system, or even the system as a whole, hoping that the problem will 
disappear – a practice rarely admitted but often performed. 



 
Frequency of a problem’s occurrence 
Each occurrence of an error can provide some additional information. Generally, 
persistent problems are the easiest to detect. If the error is transient, it is very difficult to 
catch; and oftentimes is never determined. Sometimes, the frequency of an error’s 
occurrence can be artificially amplified by forcing the system to some repetitive 
conditions that are associated with the suspected error source. Such tests are often used 
and are useful for some classes of errors, but they cannot assure correct operation of the 
system. 
 
Another technique for seldom occurring errors possible in a system is setting traps for a 
suspected error, i.e., forcing the system to perform in a different way once the system is 
affected by the error, and as such provide some extra information about the error. This 
technique requires a very thorough understanding of system operations. 
 
Debugging tools 
Various debugging tools are well described in their respective vendor literature and will 
not be addressed here. However, let me share a few comments. 
 
First, the tool must be extremely reliable, since the tester depends upon it. 
Second, they should be active online (i.e., while the tested system performs it’s intended 
function in normal conditions), while minimally interfering with the system and its 
functionality. In offline testing, errors encountered online may not be visible. This goal is 
only achievable if the testing function is an integral part of the design, a rare case today. 
Third, the device under test (DUT) should not be the only one error reporting mechanism. 
The reason is that if as a result of the error the DUT is disabled, there is no other way to 
collect the error data and define what the error is. In other words, it is advantageous to 
have an external error monitoring mechanism and resources. An additional advantage of 
such an external mechanism is its ability to offload the DUT from some online testing 
and data collection tasks.  This advantage is most visible in the embedded applications 
where the DUT is fully loaded with its main application, and has no resources available 
for collecting testing information.  
 
Debugging FPGAs with embedded processors  
Debugging FPGAs with embedded processors poses all of the challenges noted above. 
These systems are complex, highly integrated and have a very limited visibility of 
internal operations. An additional challenge also arises from the heterogeneous 
hardware/software nature of the designs, each one using its own control and debugging 
environment. Often, in order to bring the design to some desired state, both programming 
and hardware changes are required simultaneously, while tools used by both 
environments are separate. There are attempts (like Xilinx’s EDK) to put the tools under 
one common umbrella, however such solutions are seldom sufficient. 
 
The approach that we are using in our FPGA development platform (see 
www.halstor.com) employs an external processor which is the operational base for the 
debugging tools. This processor is tightly coupled with the DUT; it can control its 



operations and has access to common, memory-based debugging information. In this 
way, the embedded processor is largely free from the tools overhead and their special 
requirements (like a specific operating system), while the external processor can be 
adopted for any set of tools. There is one related and important point: Using somebody 
else’s operating software or hardware cores can make the debugging process harder, due 
to problems related to interaction between various parts and sometimes bugs inside 
purchased components. This brings us to one more rule:  
Thorough debugging requires complete control over all parts of the design, including 
purchased components. 
 
The embedded processor communicates with the external processor using operations like 
xput(), xget() and xprint(). These operations can be easily inserted into the operating 
program, providing the external processor with information about the system operations. 
In addition, placing the program stack and data regions into the common memory 
provides the external processor with debugging information even when the embedded 
processor is hanging due to some severe error. No user interface is required to be 
implemented by the embedded processor, since this role has been shifted to the external 
processor. As a result the execution program was greatly simplified, making the testing 
easier. 
 
Halstor tested its approach and platform in our SAS and Fibre Channel designs. The 
result was that we were capable of implementing these complex designs within record 
time using very limited resources, while most of the debugging was done online. 
 
Final Thoughts 
The debugging process is iterative in nature, with the number of iterations unknown from 
the start. Finding some errors can take days, weeks, even months. As a result, this is the 
most unpredictable and possibly most expensive part of the design process. Even worse, 
this is a never-ending process, since problems can be found once the product is 
manufactured in quantities and distributed to thousands of users. More than this, some 
users will invariably put the product to work under conditions not expected or not tested 
by the manufacturer. 
 
The testing considerations should be part of system specifications. Often these 
considerations are partial at best, covering only a subset of possible error sources and 
operational only under specific conditions. Such approaches may be sufficient in some 
applications, but not enough in applications that rely on system reliability. 
 
There is always a difficulty in striking a balance between the cost of the system and its 
testability. Too often the testability is underestimated and sacrificed for the sake of 
expediency. However, the more complex the systems are, the more important the 
testability is, and any compromise can backfire badly. 
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